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INTRODUCTION

Individual animals consistently differ in their behav-
ioral and physiological traits, and these differences 
can have important fitness consequences. A funda-
mental goal in ecological and evolutionary research 
is to understand the mechanisms that maintain such 
phenotypic variation within populations. Life- history 
trade- offs have been central to explaining the main-
tenance of phenotypic variation (MacArthur & 
Wilson,  1967; Pianka,  1970; Stearns,  1989) and have 
been very successful at explaining variation present at 
the among- species level (Healy et al., 2019; Promislow 
& Harvey,  1990). This classic life- history theory 

predicts that species differ in their ‘pace of life’ due 
to differential resource allocation; correlational selec-
tion subsequently generates a suite of traits involved 
with a particular strategy. In the past 10–15 years this 
classic theory has been adapted to explain variation, 
particularly in behavioral traits, at the within- species 
level. The modern ‘pace- of- life syndrome’ (POLS) hy-
pothesis predicts that individuals also differ in their 
‘paces- of- life’ and those that have faster paces- of- life 
grow faster, have shorter lives, reproduce earlier, have 
faster metabolic rates, and also exhibit riskier be-
haviors, compared to individuals with slower paces- 
of- life (Montiglio et al.,  2018; Réale et al.,  2010; Wolf 
et al., 2007; Figure 1). Originally developed to explain 
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Abstract
Understanding the evolutionary mechanisms underlying the maintenance of 
individual differences in behavior and physiology is a fundamental goal in ecology 
and evolution. The pace- of- life syndrome hypothesis is often invoked to explain the 
maintenance of such within- population variation. This hypothesis predicts that 
behavioral traits are part of a suite of correlated traits that collectively determine 
an individual's propensity to prioritize reproduction or survival. A key assumption 
of this hypothesis is that these traits are underpinned by genetic trade- offs among 
life- history traits: genetic variants that increase fertility, reproduction and growth 
might also reduce lifespan. We performed a systematic literature review and 
meta- analysis to summarize the evidence for the existence of genetic trade- offs 
between five key life- history traits: survival, growth rate, body size, maturation 
rate, and fertility. Counter to our predictions, we found an overall positive genetic 
correlation between survival and other life- history traits and no evidence for any 
genetic correlations between the non- survival life- history traits. This finding was 
generally consistent across pairs of life- history traits, sexes, life stages, lab vs. field 
studies, and narrow-  vs. broad- sense correlation estimates. Our study highlights 
that genetic trade- offs may not be as common, or at least not as easily quantifiable, 
in animals as often assumed.
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variation at the among- species level, life- history trade- 
offs are thus also invoked as evolutionary explanations 
for the maintenance of individual variation in whole 
suites of traits including life- history, physiological, 
and behavioral traits at the within- species level.

A key assumption in explaining trade- offs among 
life- history traits is that individuals have limited re-
sources, creating resource allocation compromises. 
Importantly, resolutions to these allocation challenges 
are predicted to be resolved at the genetic level: traits 
that allow individuals to invest more heavily in current 
fitness goals (e.g., higher growth rates) are predicted 
to come at the cost of future investments (e.g., lower 
future survival rate, resulting in a shorter lifespan). 
These negative correlations can come about through 
shifts in genetic architecture from antagonistic pleiot-
ropy or linkage disequilibrium. Recent meta- analyses 
summarizing studies of phenotypic correlations be-
tween life- history and behavioral traits have, however, 
shown a lack of general agreement in the direction 
of these correlations (Moiron et  al.,  2020; Royauté 
et al., 2018). In fact, Haave- Audet et al.'s meta- analysis 
found a positive, instead of negative, overall pheno-
typic correlation between survival and reproduction 
(2022). While this may appear counter- intuitive, the-
ory demonstrates that even if mechanistic trade- offs 
exist at the genetic level, correlations at the phenotypic 
level can appear as positive or zero if individuals have 
differential resource acquisition (van Noordwijk & de 
Jong, 1986). Increasing resource acquisition can allow 
some individuals to acquire more, or better quality, re-
sources than others in absolute terms, allowing them 
to both grow faster and live longer than individuals 
with fewer or poorer overall resources (Laskowski 
et  al.,  2021; Reznick et  al.,  2000). This can lead to a 

positive correlation at the among- individual level, even 
if an allocation trade- off exists at the additive genetic 
level. Importantly, manipulating or controlling re-
source acquisition is rare in most empirical studies. It 
is largely impossible in most field studies, and under 
laboratory settings food resources are typically pro-
vided ab libitum meaning individuals may not be faced 
with limiting resources at all, further obscuring the 
apparent presence of functional allocation trade- offs. 
Therefore, the key assumption of the pace- of- life syn-
drome hypothesis relies on the presence of functional 
trade- offs among life- history traits, which is best tested 
at the genetic level.

Many studies have quantified genetic correlations 
among life- history traits; however, the magnitude and 
general direction of these correlations is not yet clear. The 
most recent meta- analysis on genetic correlations among 
life- history traits was performed in 1996 (Roff, 1996), and 
it showed that while the overall genetic correlation be-
tween life- history traits was positive, there was a greater 
proportion of correlations that were negative compared to 
correlations between other traits such as morphology or 
behavior, suggesting that genetic trade- offs may be more 
likely between life- history traits. Nearly 30 years later, our 
goal is to update and expand on this previous work to ex-
plicitly test whether key life- history traits exhibit genetic 
trade- offs, the key assumption of the pace- of- life syn-
drome hypothesis explaining maintenance of phenotypic 
variation at the within- species level and life- history theory 
more generally. We expect to see negative genetic correla-
tions between traits related to survival and reproduction, 
and positive correlations between traits that contribute to 
similar fitness proxies such as between growth rates and 
rate of sexual maturation (i.e., faster growth will correlate 
positively with earlier sexual maturation; Figure 1).

F I G U R E  1  Predictions derived from the pace- of- life syndrome hypothesis for the direction of the genetic correlations between five key 
life- history traits.

PREDICTION 1. NEGATIVE GENETIC CORRELATIONS

PREDICTION 2. POSITIVE GENETIC CORRELATIONS
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M ETHODS

We compiled genetic correlations among life- history traits 
from studies published since 1995 as we assumed studies 
published before were included in Roff (1996). We focused 
on five key life- history traits: survival (e.g., longevity), 
growth rate (e.g., change in the body size between develop-
mental intervals), body size, maturation rate (e.g., reversed 
age to maturation), and fertility (e.g., number of offspring). 
We recorded body size because it could reflect growth in 
some cases (e.g., higher growth rate leads to larger body 
size within the same time interval). We predicted an over-
all negative genetic correlation between survival and these 
other life- history traits such that increases in survival or 
longevity are associated with slower growth rates, slower 
rates of sexual maturation and lower fertility (prediction 
1, Figure  1), and a positive genetic correlation between 
other life- history traits (prediction 2, Figure 1) such that 
faster growth rates, faster rates of sexual maturation and 
larger body sizes would all be associated positively with 
each other and with greater fertility. We also explored 
several moderators potentially influencing the magnitude 
and direction of the genetic correlations, including sex 
(i.e., male, female, both), life stage (i.e., adults, non- adults, 
cross), experimental design (i.e., family design, pedigrees, 
genetic lines), lab vs. field studies, and narrow-  vs. broad- 
sense estimates. We included sex as a potential moderator 
because selection pressures often differ between males and 
females (Janicke et al., 2016; Winkler et al., 2021) though 
the predicted direction of these effects on the genetic corre-
lations between life- history traits could be equivocal given 
that both sexes need to economize their resources to the 
same extent. On the one hand, we may expect stronger ge-
netic correlations in females, if we consider that they invest 
more heavily in their reproduction through the production 
of larger gametes, but on the other hand, in some species, 
males invest heavily in secondary sexual characteristics 
and may thus show tighter trade- offs among life- history 
traits. We also tested for effects of life stage (juvenile vs. 
adult) as selection pressures may be stronger on juveniles 
before they have had a chance to reproduce. We included 
lab vs. field setting as a moderator because individuals 
might be exposed to different environments depending on 
the experimental conditions (e.g., presence of predators or 
more limiting resources in field studies). Finally, we also 
included experimental design and narrow-  vs. broad- sense 
estimates as moderators to explore whether they may in-
fluence the magnitude of the genetic correlations and the 
uncertainty of the estimates.

Study selection, eligibility criteria, and 
data collection

We performed a systematic literature review following 
the Preferred Reporting Items for Systematic Reviews 
and Meta- Analyses (PRISMA) guidelines in ecology 

and evolutionary biology (O'Dea et  al. 2021). We per-
formed our search in Scopus and Web of Science in 
June 2021, and included articles published from 1995 
on. In Scopus, we used the following search string: 
TITLE- ABS- KEY(“life- histor*” OR “life histor*”) 
AND (“genetic” AND “correlate*” OR “covar*”). We 
restricted subject area to Agricultural and Biological 
Sciences, Biochemistry, Genetics, and Molecular 
Biology, Environmental Science, and Neuroscience. 
In Web of Science, we covered the following databases: 
Science Citation Index Expanded—1945- present, 
Social Sciences Citation Index—1956- present, Arts 
&Humanities Citation Index—1975- present, Conference 
Proceedings Citation Index- Science—1990- present, 
Conference Proceedings Citation Index—Social Science 
& Humanities—1990- present, Book Citation Index—
Science—2005- present, Book Citation Index—Social 
Sciences & Humanities—2005- present, and Emerging 
Sources Citation Index—2015- present; and our search 
string was: TS = (“life- histor*” OR “life histor*”)
AND(“genetic” AND “correlate*” OR “covar*”). We re-
stricted subject area to Ecology, Evolutionary Biology, 
Genetics heredity, Zoology, Marine freshwater biology, 
Biology, Fisheries, Behavioral sciences, Biodiversity 
Conservation, Environmental Sciences, Entomology, 
Ornithology, Physiology, Mathematical Computational 
Biology, Parasitology, Limnology, Developmental 
Biology, Toxicology, Demography, Endocrinology 
Metabolism, Neurosciences, Anatomy Morphology, 
Infectious Biseases, Paleontology, and Reproductive 
Biology. We limited our search to papers published in 
English.

The title and abstract of all studies (n = 3490) were 
independently screened for eligibility by three authors 
(K.L.L., M.M., and P.T.M.) using the software Rayyan 
(Ouzzani et al., 2016) and using the following inclusion/
exclusion criteria: the study should (1) be empirical, (2) 
use non- domesticated animals (studies on humans were 
also excluded), (3) include at least one life- history trait at 
any life stage, e.g., survival, fertility, growth rate, body 
size, maturation rate, or any other fitness proxy, and 
(4) explicitly mention quantitative genetic components 
such as heritability or genetic variance, but excluding 
fixation index (FST), heterozygosity matrix, and SNP 
polymorphism. In addition, (5) we excluded studies that 
measured the genetic components at the population or 
species level. To increase the reproducibility and reli-
ability of the process, three authors (K.L.L., M.M., and 
P.T.M.) screened the titles and abstracts of the same 100 
studies to calibrate the agreement on the inclusion/exclu-
sion criteria before proceeding with the screening of the 
remaining 3390 studies.

All studies that passed the title- and- abstract screen-
ing (n = 433) were full- text screened by one author (C.C.), 
but prior to that, three authors (C.C., K.L.L. and M.M.) 
calibrated the agreement on the full- text inclusion/exclu-
sion criteria using 50 studies. For the full- text screening 
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we had an additional set of five inclusion/exclusion crite-
ria in addition to the title- and- abstract ones (1–5). We ex-
cluded studies that: (6) only studied one life- history trait 
measurement or only multiple measurements on body 
size proxies, (7) did not report genetic correlations or co-
variances between life- history traits, (8) measured life- 
history traits under extreme conditions, such as extreme 
temperature or humidity, under starvation, or pathogen 
infection, because traits measured under extreme con-
ditions might mostly reflect physiological responses to 
stress; and (9) used hybrid animals (e.g., mule). Lastly, 
(10) we excluded genetic correlations measured across en-
vironments or across sexes as it is unclear how we would 
expect the genetic correlation to change across contexts 
(e.g., Sgrò & Hoffmann, 2004). Data for all studies that 
passed the full- text screening (n = 151) were extracted by 
one author (C.C.), but only after three authors (K.L., 
M.M., and A.S- T) had double- checked 5 studies each to 
ensure the reliability of the data extraction procedure. 
The PRISMA flowchart showing the number of studies 
included and excluded, and the exclusion reasons at each 
stage of the systematic review are shown as Figure  S1. 
The full list of included and excluded studies is avail-
able in Data S1. The checklist from PRISMA- EcoEvo is 
available in Data S2. The full dataset used in our anal-
yses is available in Data S3 and S4 (meta- data). Note S1 
includes the knit Rmarkdown file re- creating all results 
presented in the manuscript; Note S2 presents a sensitiv-
ity analysis (see section ‘Calculation of effect sizes and 
sampling variances’). All these data are also deposited 
online at https:// doi. org/ 10. 5281/ zenodo. 8075879.

Data coding

Proxies and trait categorization

For each genetic correlation, we recorded the life- history 
traits involved and categorized them as: survival, growth 
rate, body size, maturation rate, or fertility (Table  1). 
We excluded measures that combined more than one 
life- history trait (e.g., survival and fertility combined 
in a principal component analysis). To make genetic 

correlations comparable across studies, their signs were 
coded so that a positive genetic correlation represented 
that a genetic basis with a positive effect on one life- 
history trait also has a positive effect on the other trait 
(i.e., survive longer, reproduce more, grow faster, mature 
earlier, and bigger body size), whereas a negative correla-
tion represented that the genetic basis that benefits one 
trait has a cost to the other trait. For example, higher 
mortality means lower survival, thus, we reversed the 
sign of any genetic correlation between mortality and 
number of offspring, but not for those between longevity 
and number of offspring.

Field or lab

We recorded whether the experiment was conducted in 
the field or in the lab (including any artificial environ-
ments such as outdoor tanks and enclosures).

Experimental design

We categorized the experimental design of each study 
into three: genetic lines, family design, or pedigree. 
Genetic lines included studies using clones or genotypes, 
whereas family designs included half-  and full- sib de-
signs and parent- offspring pairs. We considered studies 
using individual information from a pedigree (e.g., re-
latedness matrix using data from parents and grandpar-
ents) as a pedigree design. Design was used to determine 
the unit of replication at which to calculate the sampling 
variance of each genetic correlation (see below).

Sample size

We recorded sample sizes at multiple levels if provided, 
including number of: (i) families/dams/sires, (ii) indi-
viduals or offspring, and (iii) genetic lines or clones. If 
only degrees of freedom were provided, we decided to 
assign sample size as the degrees of freedom plus one 
for all models regardless of model structure because it 

TA B L E  1  Categorization of life- history trait proxies.

Traits Proxies

Survival Longevity (e.g., days) and mortality (e.g., proportion of individuals who died at a certain time- point)

Growth rate The change in body size or mass during a time interval (e.g., change in body size per day)

Body size Body size or weight, or body condition (i.e., weight relative to size) at any life stage, as well as other proxies such as 
tarsus length in birds or thorax width in insects

Maturation rate Rate to reach maturation, including development time, pre- adult duration, age at metamorphosis or maturity, and 
age at first reproduction

Fertility Direct measures of reproduction, including number of eggs, hatchlings, recruits, and adult offspring, birth rate (e.g., 
per year), mating success, number of mating events, extra- pair reproduction, and within- pair paternity success

We excluded measures that do not directly reflect fertility, such as reproductive tissue size, laying date, mate choice 
outcome, age at last reproduction, or rate of ageing
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was often difficult to determine the exact sample size 
from degrees of freedom based on model structure (e.g., 
mixed- effects models).

Narrow-  or broad sense

We recorded whether the genetic correlations were 
calculated as additive genetic correlations (narrow- 
sense) or broad- sense genetic correlations (additive and 
non- additive).

Sex

We recorded the sex of the measured individuals (i.e., 
female or male), using “both” when the authors either 
included individuals of both sexes or were unable to tell 
the sexes apart (e.g., measures taken before the individu-
als have reached adulthood). Note that contrary to the 
other life- history traits, fertility was mostly a female trait 
in our database (except for extra- pair and within- pair 
reproduction, sperm competitiveness, and mating suc-
cess). In those cases where one of the life- history traits 
involved in the genetic correlation was measured for 
“both” sexes and the other trait measured for either fe-
males or males only, we used the latter to categorize the 
genetic correlation as “female” or “male”, respectively. 
We excluded cross- sex (i.e., across males and females) ge-
netic correlations.

Life stage

We recorded the life stage of the measured individuals 
(i.e., non- adult or adult), using “both” when authors ei-
ther mixed individuals at both life stages or measured 
across life stages (from non- adult to adult). Note that 
the categorization of life stages is strongly linked to the 
life- history trait itself. For example, fertility can only be 
measured at the adult stage and maturation rates can 
only be measured at non- adult stages, whereas longev-
ity proxies could be considered as either non- adult stages 
(e.g., larval viability) or “both” stages (e.g., longevity). In 
cases where the trait pairs were measured at different 
life stages, we assigned the genetic correlation as “cross” 
life stages. Note also that the life stage variable may be 
linked with sex; for example, non- adults are likely to be 
“both” sexes.

Genetic correlation or (co)variance

Our effect sizes of interest for the meta- analytic models 
were genetic correlations, which we preferentially ex-
tracted from the text and tables of the included studies. 
However, if the information was only provided in figures 

(e.g., barplots), we used the software WebPlotDigitizer 
(Rohatgi,  2022) to extract and calculate those genetic 
correlations. If the study only provided genetic (co)vari-
ances, we calculated their corresponding genetic correla-
tions as

where rGxy is the genetic correlation between life- history 
trait x and y, and Covxy is the genetic covariance between 
them. �2

x
 and �2

y
 are the genetic variances of the respective 

life- history traits.

Other variables

We recorded the year of publication of each study to test 
for decline effects. We also recorded the year when the 
experiments took place, the statistical approach used in 
each study to estimate each genetic correlation (i.e., ani-
mal model, family mean correlations, genetic line mean 
correlations or matrix ‘by hand’ calculations), and the 
geographical location.

Calculation of effect sizes and 
sampling variances

We transformed all genetic correlations (rGxy) to Fisher's 
Zr (Hedges & Olkin, 1985), which, contrary to the cor-
relations, is unbounded and normally distributed, 
following:

Before applying the Fisher's Zr transformation, we ex-
cluded any rGxy ≤−1 and ≥1 as well as genetic variances <0 
from the analyses because (1) these estimates are likely 
unreliable and (2) the former cannot be transformed to 
Zr (see Equation  (2)). A potential solution could have 
been to artificially change those ≤ −1 and ≥1 values to 
a value within the −1<value <1 bound; however, we de-
cided against it because our choice of value would con-
tribute to substantial noise in the dataset. For example, 
converting 1 to 0.9 yields a Zr value of 1.47, while con-
verting 1–0.99 yields a Zr value 2.65.

The sampling variance in Zr (Hedges & Olkin, 1985) 
was calculated as

where the sample size (n) was determined based on the type 
of experimental design (see section ‘Design’ and ‘Sample 

(1)rGxy =
Covxy
√

�
2
x
�
2
y

(2)Zr =
1

2
ln
(1 + rG)

(1 − rG)

(3)VZr =
1

(n − 3)
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Size’): (1) For genetic line designs, we used the number of 
genetic lines as the sample size. When these studies used 
multiple genetic lines with several crossings within or be-
tween lines, we still used the number of genetic lines as the 
sample size because the genetic lines, instead of the num-
ber of families, best captures the amount of genetic vari-
ation in the study population that generates the variation 
among families. (2) For family designs, we used the num-
ber of full families as the sample size, but when this was not 
provided, we used the number of dams, which reflects the 
number of full families, or if that was not provided either, 
we used the number of sires. (3) For pedigree designs, we 
used the number of individuals as the sample size. In cases 
where a study provided a range for the sample size (e.g., 
100–200 individuals), we use the smaller number (i.e., 100) 
for the analyses to err on the conservative side. Lastly, in 
cases where the sample sizes differed between the two life- 
history traits used to calculate the genetic correlation, we 
used the smaller number (e.g., in a genetic correlation be-
tween growth rate and survival, 200 individuals were used 
to measure growth rate, but only 100 individuals were used 
for survival, then 100 was used as the sample size for this 
genetic correlation). As the number of individuals in the 
pedigree designs tends to be much larger than the number 
of genetic lines or families, we conducted a sensitivity anal-
ysis where the sample sizes for the pedigree designs were 
natural- log transformed prior to calculating VZr (results 
were robust to this sensitivity analysis; see Supplementary 
Note).

Meta- analysis

All analyses were performed in R v.4.2.2 (R Core 
Team,  2021) using the R package ‘metafor’ v.3.4 
(Viechtbauer, 2010). To test our predictions (Figure 1), we 
ran two sets of analyses, one for survival pairs (Figure 1, 
Prediction 1), and the other one for non- survival pairs 
(Figure 1, Prediction 2).

To estimate the overall mean effect size (i.e., the meta- 
analytic mean) for each prediction, we ran phylogenetic 
multilevel intercept- only models that included phylog-
eny, species, study identity, group identity, and a unit- 
level observation identity as random effects using the 
function rma.mv() from the R package ‘metafor’. We 
extracted the phylogenetic information from the Open 
Tree of Life database using the R package ‘rotl’ v.3.0.11 
(Michonneau et al. 2016). We computed branch lengths 
using the Grafen method with height set to 1 using the 
R package ‘ape’ v.5.4.1 (Paradis and Schliep 2019), and 
the phylogenetic variance–covariance matrix was then 
added as a random effect to all models. Figure S2 shows 
the phylogenetic relationship of species. Species was also 
added as a random effect because studies using the same 
species are likely to have similar estimates regardless of 
phylogeny (Cinar et al., 2022). Study identity was added as 
a random effect because some studies provided multiple 

genetic correlations. When a study provided multiple ge-
netic correlations for different experiments (e.g., with dif-
ferent environmental conditions), we used group identity 
to account for such non- independence. Group identity 
was identical to study identity if the study only provided 
one genetic correlation for one pair of traits. We included 
a unit- level observation identity to model within- study 
or residual variance. For the intercept- only models, we 
provide Q as a measure of total absolute heterogeneity 
and I2 as a measure of total relative heterogeneity, which 
we also partitioned for each random effect (Nakagawa 
& Santos, 2012). The 95% confidence intervals (CI) of I2 
were calculated using the function i2_ml() from the R 
package ‘metaAidR’ v.0.0.0.900 (Lagisz et al., 2022).

To investigate the sources of heterogeneity observed 
in the intercept- only models (see Results), we explored 
several moderators (i.e., variables extracted in the ‘Data 
coding’ section: trait pairs, lab vs. field, experimental 
design, sexes, narrow-  vs. broad- sense, life stages) by 
running phylogenetic multilevel meta- regressions with 
the same random effects structure as the intercept- only 
models. We ran separate meta- regressions for each mod-
erator (i.e., uni- moderator meta- regressions). We did 
not run meta- regressions with multiple moderators be-
cause moderators were often correlated (but see section 
‘Publication bias’). For these meta- regressions, we re-
ported the percentage of variation explained by the mod-
erator(s) as R2

marginal (Nakagawa & Schielzeth, 2017), 
which was calculated using the function r2_ml() from 
the R package ‘orchaRd’ v.2.0 (Nakagawa et al., 2021). 
We performed post hoc tests for moderators having more 
than two levels using the function linearHypothesis() 
from the R package ‘car’ v.3.1.1 (Fox & Weisberg, 2019).

We plotted the results from all the models using the 
function orchard_plot() from the R package ‘orchaRd’ 
v.2.0 (Nakagawa et al., 2021), and reported the estimates 
with both their 95% CIs and their 95% prediction inter-
vals (PIs). The latter incorporate heterogeneity to show 
the range of effect sizes to be expected for 95% of similar 
studies (IntHout et al., 2016).

Some studies calculated multiple genetic correlations 
from the same exact data using different methodologies 
(e.g., different analytical approaches). In these cases, 
we used only one estimate and selected it based on the 
following order of priority: (1) estimates from the model 
with the fewest number of variables (i.e., fixed and ran-
dom effects) included whenever the study provided esti-
mates from models with different model structures; (2) 
estimates from a model that partitioned genetic vari-
ances (i.e., animal models) over estimates solely based on 
correlations across family means or line means because 
the latter two could be biased by parental or permanent 
environmental effects; (3) estimates from the largest 
dataset provided if the study also provided estimates 
from subset(s); and (4) we arbitrarily selected the second 
set of estimates when we could not classify them based 
on the above criteria (n = 6 studies).
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Publication bias

We tested for small- study and decline effects, i.e., re-
duction in effect size over time, by running a total of 
six meta- analytic models, three for the pairs of sur-
vival traits and three for the non- survival pairs. These 
included phylogenetic multilevel uni- moderator meta- 
regressions with either standard error (square root of 
VZr) or mean- centered year of publication as the only 
moderator (Nakagawa et al., 2022) for both survival and 
non- survival pairs. The random effect structure was 
identical to the models mentioned above. We also fit ‘all-
 in’ models following Nakagawa et  al. (2022) which are 
models that simultaneously include all moderators (pair 
of traits, lab vs. field, sex, life stage, experimental de-
sign, narrow-  vs. broad- sense, standard error, and mean- 
centered year of publication) and corrected for phylogeny 
to test whether evidence for publication bias remained 
after accounting for the heterogeneity explained by all 
our moderators combined.

RESU LTS

Our final dataset comprised a total of 1356 genetic 
correlations from studies published since the seminal 
Roff (1996) paper.

Of these, 543 were for correlations between survival 
and other life- history traits, what we will call ‘sur-
vival pairs’ throughout. These estimates came from 58 
studies across 37 species (11 classes, Table 2), with in-
sects (k = 405, n = 39 studies) and particularly the fruit 
fly Drosophila melanogaster being the species most 
commonly studied (k = 153, n = 15 studies). There were 
a relatively small number of estimates for the genetic 
correlation between survival and growth (k = 30, n = 8 
studies; Figure 2).

Counter to the key assumption of the pace- of- life 
syndrome hypothesis, we did not find support for an 
overall negative genetic correlation between survival 
and other life- history traits, but instead, an overall pos-
itive genetic correlation (Zr = 0.19, 95% CI [0.06–0.31], 
95% PI [−0.99–1.37], Figure 2a). However, both absolute 
and relative heterogeneity were high, with 7.6% being 
attributed to study, 8.7% attributed to experimental 
group, 17.9% attributed to species, and 64.5% attributed 
to residual/within- study variance; phylogeny did not 
account for any heterogeneity (Table 3). We did not de-
tect statistically significant differences among different 
pairs of life- history traits (genetic correlation between: 
survival and fertility: 0.22, 95% CI [0.07–0.36]; survival 
and growth: 0.22, [−0.04–0.49]; survival and maturation: 
0.12, [−0.03–0.28]; survival and size: 0.20, [0.04–0.35]; 
p > 0.34 in all post hoc analyses; Figure 2b, Table S1), and 
the variation explained by this moderator was negligible 
(R2

marginal = 0.4%).
The other 813 genetic correlations were estimated be-

tween the other life- history traits not including survival, 
what we will call ‘non- survival pairs’. These correla-
tions were collected from 108 studies across 82 species 
(12 classes, Table 2), with insects (k = 528, n = 66 studies) 
providing the most estimates. Interestingly, the rain-
bow trout Oncorhynchus mykiss also provided a large 
number of estimates (k = 97, n = 4 studies). There were 
relatively few genetic correlations between growth and 
fertility (k = 17, n = 5 studies; Figure 2). For non- survival 
life- history traits, we found that the overall genetic cor-
relation between them did not statistically differ from 
zero (Zr = 0.11, 95% CI [−0.13–0.34], 95% PI [−1.16–1.38], 
Figure 2c). However, both absolute and relative hetero-
geneity were also high: 9.8% was attributed to phylog-
eny, 30.4% attributed to study, and 59.7% attributed to 
residual/within- study variance; there was no heteroge-
neity attributable to species or group identity (Table 3). 
Estimates among different pairs of non- survival life- 
history traits largely overlapped (correlation between 
fertility and size: 0.19, 95% CI [−0.01–0.39]; growth and 
fertility: 0.05, [−0.35–0.46]; growth and maturation: 0.36, 
[0.09–0.63]; growth and size: 0.16, [−0.08–0.39]; matura-
tion and fertility: 0.19, [−0.02–0.40]; maturation and size: 
−0.03, [−0.22–0.16]; Figure  2d), although the following 
comparisons differed statistically: the correlation be-
tween fertility and size, maturation and fertility, growth 
and maturation, growth and size were all significantly 
larger than the correlation between maturation and size 
(p = 0.002, p = 0.004, p = 0.0004, and p = 0.03, respectively, 
Figure 2d, Table S2). The variation explained by the mod-
erator “trait pairs” was relatively small (R2

marginal = 3.5%).
Furthermore, we explored several potential modera-

tors that may explain the high levels of heterogeneity ob-
served for both survival and non- survival pairs. Overall, 
results were generally consistent across moderator levels 
for genetic correlations between survival pairs (p > 0.14, 
Figure  3a; Table  S3) and genetic correlations between 

TA B L E  2  Total number of correlations and studies (in 
parentheses) included within each animal taxon.

Pairs of survival 
traits

Pairs of non- survival 
traits

Actinopterygii 32 (3) 132 (11)

Amphibia — 50 (8)

Appendicularia 4 (1) 31 (1)

Aves 8 (3) 4 (1)

Bivalvia 20 (1) 13 (4)

Branchiopoda 10 (1) 17 (2)

Chromadorea 41 (4) 14 (3)

Collembola 1 (1) 10 (2)

Gastropoda 4 (1) 12 (2)

Insecta 405 (39) 528 (66)

Lepidosauria 2 (1) 6 (2)

Mammalia 16 (3) 24 (6)
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8 |   GENETIC TRADE- OFFS IN LIFE- HISTORY TRAITS

non- survival pairs (p > 0.14, except for the compari-
son between adult stages and cross stages [p = 0.02]; the 
comparisons between females and males and between 
family and pedigree designs were marginal [p = 0.054 

and p = 0.08, respectively], Figure  3b, Table  S4). The 
moderators explained a relatively small amount of vari-
ation for survival pairs (lab vs. field: R2

marginal = 1.4%; 
sex: R2

marginal = 0.4%; life stage: R2
marginal = 0.09%; 

F I G U R E  2  The overall genetic correlation between survival and other life- history traits was positive (a) and did not clearly differ among 
different pairs of traits (b). In contrast, the overall genetic correlation among pairs of non- survival life- history traits was not clearly different 
from zero (c) and, with a few exceptions, (d) did not clearly differ among the different pairs of traits (see section ‘Results’). Orchard plots 
show the mean estimate, 95% CI (thick whisker) and 95% PI (thin whisker), with dot size being scaled by effect size's precision (i.e., 1/SE). k 
corresponds to the numbers of genetic correlations, with numbers of studies shown in parentheses.

(a) (b)

(c) (d)

Pairs of survival 
traits

Pairs of non- survival 
traits

Q 23,815, p < 0.0001 430,354, p < 0.0001

I2 total 98.7 (98.5–98.8) 99.8 (99.8–99.8)

I2 species 17.9 (11.4–25.3) 0 (0–0)

I2 phylogeny 0 (0–0) 9.8 (7.2–12.8)

I2 study identity 7.6 (5.1–10.5) 30.4 (24.5–36.7)

I2 group identity 8.7 (6.8–10.8) 0 (0–0)

I2 unit- level observation identity 64.5 (57.8–70.7) 59.7 (53.9–65.3)

TA B L E  3  Absolute (Q) and relative 
heterogeneities (%, I2) for the intercept- 
only models (see section “Methods”). 
Parentheses show 95% confidence 
intervals.
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   | 9CHANG et al.

experimental design: R2
marginal = 1.1%; narrow-  vs. broad 

sense: R2
marginal <0.001), and non- survival pairs (lab vs. 

field: R2
marginal = 1.8%; sex: R2

marginal = 0.7%; life stage 
R2

marginal = 1.0%; experimental design: R2
marginal = 1.8%; 

narrow-  vs. broad- sense: R2
marginal = 0.5%).

We detected little evidence of small- study effects in 
both survival pairs (slope of SE = 0.42, 95% CI [−0.20–
1.05]; overall meta- analytic mean = 0.11, [−0.05–0.28]; 
p = 0.19; R2

marginal = 1.1%; Figure 4a) and non- survival pairs 

(slope of SE = −0.45, [−1.06–0.16]; overall meta- analytic 
mean = 0.19, [−0.09–0.48]; p = 0.15; R2

marginal = 1.1%; 
Figure 4b). Evidence for an overall decline in the genetic 
correlation over time was also seemingly not present for 
survival pairs (slope of publication year = 0.05, [−0.04–
0.13]; overall meta- analytic mean = 0.18, [0.05–0.31]; 
p = 0.27; R2

marginal = 0.6%; Figure  4c) and non- survival 
pairs and (slope of publication year = 0.06, [−0.02–0.15]; 
overall meta- analytic mean = 0.1, [−0.11–0.31]; p = 0.15; 

F I G U R E  3  Genetic correlations between both survival and other life- history traits (a) and between non- survival life- history traits (b) 
were not strongly affected by moderators. Orchard plots show the mean estimates, and 95% CI (thick whisker), 95% PI (thin whisker), with dot 
size being scaled by effect size's precision (i.e., 1/SE). k corresponds to the numbers of genetic correlations, with numbers of studies shown in 
parentheses.
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10 |   GENETIC TRADE- OFFS IN LIFE- HISTORY TRAITS

R2
marginal = 1.0%; Figure  4d). These results were con-

firmed by the ‘all- in’ models (see Table S5).

DISCUSSION

Our meta- analysis indicates a lack of strong evidence 
for the appearance of genetic trade- offs between life- 
history traits at the within- species level. In contrast, we 
detected an overall positive genetic correlation between 
survival and other life- history traits; that is, individuals 
who live longer tend to also have higher performance 
at other life- history traits collectively (i.e., grow faster, 
mature earlier, and have more offspring), although the 
magnitude of this genetic correlation was rather mod-
est (meta- analytic mean = 0.19 and 95% CI [0.06–0.31]) 
with large heterogeneity. This result generally suggests 
a lack of ‘paces of life’ at the genetic level and is aligned 
with findings from a previous meta- analysis showing a 
positive average phenotypic correlation between survival 
and fertility (Haave- Audet et al., 2022). In all, this means 
that, based on current evidence, the key assumption un-
derpinning the pace- of- life syndrome hypothesis – live 
fast and die young – is not well supported, or at the very 
least, not easily observable, calling into question the 
adequacy of this often well- accepted hypothesis as an 

explanation for the existence and maintenance of indi-
vidual differences in behavioral and physiological traits 
at the within- species level.

Life- history theory was originally developed to ex-
plain variation at the among- species level: species differ 
in how they resolve resource allocation trade- offs gen-
erating differences in ‘paces of life’ (Stearns, 1989). The 
pace- of- life syndrome hypothesis builds on this theory 
to predict that behavioral traits, especially those related 
to risk- taking, and physiological traits are key to re-
solving this trade- off, thus providing an explanation for 
the maintenance of phenotypic variation at the within- 
population level (Réale et  al.,  2010). In direct contrast 
to one of the key assumptions of life history theory gen-
erally and the pace- of- life syndrome hypothesis specif-
ically, our meta- analysis shows no strong evidence for 
the expected genetic trade- offs but instead, an overall 
positive genetic correlation between survival and other 
life- history traits.

Charnov (1989) showed that for simple two trait mod-
els, a negative genetic correlation can be a good indicator 
of a functional trade- off (i.e., differences in allocation). 
However, later models that explicitly modeled the rela-
tionships between many traits showed that this need not 
always be the case. First, genetic variation for resource 
acquisition may produce positive genetic correlations 

F I G U R E  4  Genetic correlations for pairs of survival traits and pairs of non- survival traits were not clearly associated with their standard 
error (i.e., no clear evidence of small- study effects; a, b), and there was no clear evidence of effect sizes declining over time (c, d). The solid lines 
are the model estimate, shaded areas are the 95% CI, with the size of the circles being scaled by their precision (i.e., 1/SE).
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(van Noordwijk & de Jong,  1986) as some individuals 
can then allocate more in absolute terms to many traits; 
the ‘big house, big cars’ analogy (Reznick et al., 2000). If 
there are more genetic variants that contribute to vari-
ation in resource acquisition than resource allocation, 
Houle's model showed that mutation- selection balance 
alone is sufficient to produce positive genetic correla-
tions (1991). These positive correlations may also be ex-
pected to be more evident when resources are abundant 
such as in lab settings where most animals are typically 
fed ab libitum. Indeed, we found a tendency for correla-
tions between survival and other life- history traits col-
lected in lab- based studies to be more positive compared 
to correlations collected from field studies. Though this 
comparison between lab and field- based studies should 
be interpreted very cautiously given that the vast major-
ity of our compiled estimates (492 out of 553) were con-
ducted in lab settings so this could potentially be due 
to sampling bias. Estimating genetic correlations under 
limiting resource conditions may better reveal functional 
trade- offs.

Differences in resource acquisition among individu-
als have been highlighted in classic life- history theory as 
potentially obscuring the presence of within- individual, 
that is, functional allocation trade- offs (de Jong & van 
Noordwijk,  1992; Reznick et  al.,  2000; van Noordwijk 
& de Jong,  1986). Variation in resource acquisition is 
likely especially relevant when considering the Pace- 
of- life syndrome hypothesis, which explicitly deals with 
among- individual variation in behavioral traits. The 
pace- of- life syndrome hypothesis predicts that behavior 
helps mediate trade- offs (e.g. risky behaviors can help an 
animal gather resources to fuel current reproduction but 
in doing so expose itself to greater mortality risk), but 
it may be that an individual's behavior is more tightly 
linked to its acquisition strategies rather than its alloca-
tion strategies (Laskowski et al., 2021). This is especially 
relevant because, while there is good evidence for trade- 
offs among life- history strategies at the species level 
(Healy et al., 2019; Promislow & Harvey, 1990), it seems 
unlikely that a single species would harbor the same level 
of variation in the key behavioral or physiological traits 
that moderate allocation trade- offs as is present across 
a large number of species (Stearns & Rodrigues,  2020; 
White & Seymour, 2004). Together with results from mul-
tiple previous meta- analyses testing for the predictions 
of the pace- of- life syndrome hypothesis (Haave- Audet 
et  al.,  2022; Moiron et  al.,  2020; Royauté et  al.,  2018), 
empirical evidence on individual differences in resource 
allocation strategy driving individual differences in be-
havior appears to be weak, at best.

Once resources are acquired, complex genetic rela-
tionships between traits and how those resources are 
allocated can further obscure functional trade- offs. 
The fitness of an individual will be determined by all 
traits of an individual; however, most studies, necessar-
ily, often measure just a few. This may be problematic 

because correlations with unmeasured traits and the 
relationships between suites of traits can produce posi-
tive or negative correlations depending on the relation-
ship (Charlesworth, 1990; de Jong, 1993; de Jong & van 
Noordwijk, 1992). For instance, a genetic correlation be-
tween two life- history traits may not be representative 
of the underlying functional trade- off if the measured 
traits interact in a more complex manner than a simple 
bivariate relationship. The bivariate analyses typically 
used to estimate genetic correlations do not take into ac-
count how the two measured traits might also be related 
to other (unmeasured or not statistically modelled) life- 
history traits, ignoring important biological complexity 
that can ultimately obscure the appearance of genetic 
correlations (Charlesworth,  1990). Furthermore, De 
Jong provided a model showing that the order in which 
resources are allocated between traits can alter the ge-
netic correlation between those traits: initial allocation 
decisions can generate negative correlations between 
traits but subsequent sub- allocations can generate pos-
itive correlations (1993). Houle  (1991) also highlighted 
how differences in the number of loci underpinning re-
source acquisition and allocation traits can obscure the 
appearance of negative genetic correlations as evidence 
for functional trade- offs, especially when the number of 
loci underpinning resource acquisition traits is bigger 
than that in allocation traits and there is little pleiot-
ropy between them. Altogether, this does not necessarily 
mean that functional trade- offs do not exist, but that just 
sampling a few traits and fitting them to simple bivariate 
analyses may not provide the whole picture and make 
observing the expected trade- offs exceedingly difficult.

In addition to the genetic complexity interlinking 
traits, it is important to note that these genetic relation-
ships can also be responsive to changes in the environ-
ment. Life- history traits are highly responsive to the 
environment (Acasuso- Rivero et al., 2019), and if individ-
ual reaction norms cross, the sign of the genetic correla-
tion can even reverse (Sgrò & Hoffmann, 2004; Stearns 
et al., 1991). For example, in one environment, genotype 
A may have higher growth and survival than genotype B 
(i.e., positive genetic correlation), yet in another environ-
ment, genotype A has higher growth but lower survival 
than genotype B (i.e., negative genetic correlation), thus 
causing the sign of the overall genetic correlation to re-
verse. Resource availability can act as an environmen-
tal gradient that causes exactly this (Wright et al., 2019). 
Salzman et  al.  (2018) modelled how allocation and ac-
quisition decisions can be modified by environmental 
conditions changing the expected correlations among 
traits. Indeed, the genetic correlation between longev-
ity and fecundity has been found to switch from posi-
tive to negative under low resource availability (Ernande 
et al., 2003; Messina & Fry, 2003). Altogether, the genetic 
correlations between life- history traits may be dynamic 
depending on the environment or genetic background of 
the animal.
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12 |   GENETIC TRADE- OFFS IN LIFE- HISTORY TRAITS

Finally, it is worth mentioning that while we did not 
find strong evidence for publication bias, there was some 
indication that the overall positive genetic correlation 
we found between survival and other life- history traits 
may be influenced by small sample size effects. While 
there was no significant effect of the study's standard 
error (as a proxy for its precision), including this effect 
in the model reduced the estimate of our overall meta- 
analytic mean from 0.19 (95% CI: [0.06–0.31]) in the 
intercept- only model to 0.11 (95% CI: [−0.05 to 0.28]). 
For non- survival trait pairs, the effect of the standard 
error was negative, though non- significant, also sugges-
tive of the idea that smaller studies may have been more 
likely to find (or report) larger effect sizes. Altogether, 
meta- analyses rely on the quality of the work being an-
alyzed. Coupled together with the high heterogeneity 
we see in the estimates, we encourage caution in over-
generalizing the finding of positive genetic correlations 
between survival and other life- history traits. It is also 
worth noting that the vast majority of our correlations 
between survival and other life- history traits came from 
studies on invertebrates, and insects (often Drosophila 
fruit flies) in particular. While the genetic tractability 
of these animal systems makes getting these measures of 
genetic correlations more feasible, it is possible that this 
over- representation of a handful of species may limit our 
ability to generalize these findings to other species with 
different lifespans, reproductive tactics, or ecologies 
generally.

CONCLU DING REM ARKS

Trade- offs between life- history traits are often invoked 
as evolutionary mechanisms underlying within- species 
differences in behavioral and physiological traits, ulti-
mately, with fitness consequences. However, our meta- 
analysis reveals no strong evidence for the expected 
overall negative genetic correlation, and instead, it shows 
evidence for an overall positive genetic correlation. This 
suggests that genetically based resource allocation trade- 
offs between life- history traits may not be as common, or 
at least as commonly observable, as is often assumed. 
Variation in resource acquisition and/or relationships 
with unmeasured traits may be obscuring the expected 
functional trade- offs. Ultimately, our results confirm 
once again that the jury is still out regarding the validity 
of the pace- of- life syndrome hypothesis, as it is currently 
conceived, as an explanation for the ubiquitous existence 
of individual differences in behavioral and physiologi-
cal traits at the within- species level. We encourage a re-
newed focus on investigating the mechanisms underlying 
such individual differences, manipulative experiments 
to tease apart such mechanisms, and the development of 
formal theory to generate quantitative predictions about 
the relationships we expect to see among relevant traits 
and the conditions under which we expect them.
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